Ime strani: ARRSProjekti / 2022 / 4D STEM energijsko učinkovitih materialov do kvantne ravni

4D STEM energijsko učinkovitih materialov do kvantne ravni

Nazaj na seznam za leto 2022


Oznaka in naziv projekta

J7-4637 4D STEM energijsko učinkovitih materialov do kvantne ravni
J7-4637 4D STEM of energy related materials down to quantum level

Logotipi ARRS in drugih sofinancerjev

© Javna agencija za raziskovalno dejavnost Republike Slovenije

Projektna skupina

Vodja projekta: prof. dr. Andreja Benčan Golob (K5)

Sodelujoče raziskovalne organizacije: Povezava na SICRIS

Jozef Stefan Institute, JSI: Electronic ceramics department - K5, Department for Nanostructured materials - K7, Physical and Organic chemistry - K3, Knowledge Technologies - E8

National Institute of Chemistry, NIC: Department of Materials Chemistry, Laboratory for Modern Battery Systems - KI-batt, Laboratory for Electrocatalysis - KI-cat

Sestava projektne skupine: Povezava na SICRIS

Vsebinski opis projekta

Slovensko:

V predlaganem velikem interdisciplinarnem projektu želimo raziskati možnosti uporabe novih 4D STEM tehnik za poglobljeno karakterizacijo izbranih najsodobnejših funkcijskih energijsko učinkovitih materialov. Ob razvoju trajnostne brezogljične družbe so številni funkcijski energijsko učinkoviti materiali našli svoje mesto v nastajajočih zelenih tehnologijah. Li-ionske baterije, elektrokatalizatorji, magnetni in feroelektrični materiali se nahajajo v številnih aplikacijah. Lastnosti kot so napetostna, električna in magnetna polja v kombinaciji s spremembami v atomski strukturi in porazdelitvijo gostote naboja imajo odločilen vpliv na njihovo uporabo. Med številnimi tehnikami karakterizacije materialov, ki omogočajo preučevanje teh lastnosti, izstopa vrstična presevna elektronska mikroskopija (STEM) in zlasti na novo razviti pristopi 4D STEM, s katerimi lahko študiramo posamezne atome do kvantne ravni. V predlaganem projektu bomo vzpostavili 4D STEM metodološko platformo, ki temelji na modelnih materialih in bo podprta s izračuni iz prvih principov in s pristopi strojnega učenja. Ta metodologija bo uporabljena pri funkcijskih materialih za študij napetostnega in električnega polja, pridobivanje kvantitativnih informacij o lokalnih magnetnih momentih, magnetne teksture, za identifikacijo lahkih elementov v vzorcih občutljivih na elektronski snop in za študij porazdelitve gostote naboja. Pridobljeno znanje bo osnova nadaljnjim raziskavam pri razvoju novih funkcijskih materialov z izboljšanimi lastnostmi.

Angleško:

In the proposed large interdisciplinary project, we aim to explore the potential of novel 4D STEM techniques application for in-depth characterization of the selected state-of-the-art functional energy-related materials. Upon the strive for development of sustainable zero-carbon society, a number of functional energy-related materials has found its placing in the emerging green technologies. Li-ion batteries, electrocatalysts, magnetic and ferroelectric materials are found in many of the forefront applications. Contributing to the functional properties of these materials, strain, electric and magnetic fields, combined with the variations in the atomic structure and charge density distribution have a decisive influence on the materials application. Among a number of materials characterization techniques that permit to study these properties, scanning transmission electron microscopy (STEM), and, particularly, newly developed 4D STEM approaches, capable to reach down to the quantum level of individual atoms, stand out. In the proposed project we will establish a 4D STEM methodology platform based on model materials and supported by the first principle calculations and machine learning approaches. This methodology will be applied to the functional materials for mapping strain and electric field, extracting quantitative information on local magnetic moments, mapping magnetic texture, visualization of light elements under low energy beam conditions and charge density distribution mapping. Gaining broader understanding of structure/functional properties relation in such manner will promote a more considerate approach to the design of novel functional materials with enhanced properties.

Osnovni podatki sofinanciranja so dostopni na spletni strani SICRIS.

Faze projekta in opis njihove realizacije

1. Faza

Development and application of 4D STEM methodology for electric, magnetic, strain fields, light element imaging and charge density determination using DFT and machine learning

2. Faza

4D STEM study of selected functional energy-related materials

3. Faza

Bibliografske reference


Nazaj na seznam za leto 2022