K3-en / PhysChemLabCorrInhibitors

K3-en/K3.png

Research programme


Corrosion protection

In the field of corrosion protection our research is focused on the following topics:


Corrosion Inhibitors

The inhibition of corrosion using corrosion inhibitors has been for decades one of the most important method of corrosion protection. Inhibitors are inorganic or organic compounds which when added in small concentrations form a surface layer that protects the underlying metal surface from dissolution and, consequently, decreases the corrosion rate. The choice of inhibitors is based on its inhibition efficiency but also on price and environmental harmlessness. Our research studies are focused on liquid-based inhibitors. These can be classified as anodic, cathodic and mixed depending on whether they mainly affect anodic, cathodic or both reactions, respectively. Mixed inhibitors affect both anodic and cathodic reaction and can act through physisorption, chemisorption and film formation. Among the most important inhibitors for copper are triazole and imidazole-based inhibitors. Benzotriazole (BTAH) has been known since 1947 to be a very effective inhibitor of corrosion for copper and copper alloys. A number of inhibitors was investigated in our laboratory, mainly for copper-, zinc- and iron-based metals. Modelling based on density functional theory (DFT) became indispensable help when explaining experimental observations. It provides data on adsorption mechanism and bonding of inhibitors on the metal surface. Additionally it allows for the calculations of electronic properties of the metal/adsorbate system, which can provide physical insight into the processes of corrosion and corrosion inhibition. One of the recent trends in corrosion protection is the synergistic use of inhibitors. The combination of different inhibitors can either increase the effect of each inhibitor individually, or bring additional functional property, for examples hydrophobicity.


  • Corrosion inhibitors

Figure: (a) Polarization curves recorded for copper in 0.5 M NaCl with and without benzotriazole (BTA) added in concentration of 1, 5 and 30 mM. Scan rate was 1 mV/s. (Reprinted from the publication by T. Kosec, I. Milošev, B. Pihlar, Appl. Surf. Sci., 2007, 253, 8863–8873) Skeletal structure of BTA is given in inset. (b) The structure of BTA is planar and therefore favourable for physisorption on metal surface as shown by tentative structure; planar physisorbed BTAH polymers are packed so as to form compact and thin film. (Reprinted from the publication by M. Finšgar, A. Lesar, A. Kokalj, I. Milošev, Electrochim. Acta, 2008, 53, 8287–8297)

Corrosion inhibitors: Selected Publications

  1. I. Milošev, Corros. Sci., 2024, 229, 111854-1–111854-17.

  2. I. Milošev, P. Taheri, B. Kapun, D. Kozlica, A. Mol, A. Kokalj, Corros. Sci., 2024, 240, 1–24.

  3. I. Milošev, T. Pavlovčič, M. Tomšič, Electrochim. Acta, 2024, 504, 1–21.

  4. D. Kozlica, J. Izquierdo Perez, R. M. Souto Suarez, I. Milošev, npj Mater. Degrad., 2023, 7, 1–10.

  5. D. Kozlica, B. Hernandez-Concepcion, J. Izquierdo Perez, R. M. Souto Suarez, I. Milošev, Corros. Sci., 2023, 217, 111114-1–111114-18.

  6. F. Chiter, D. Costa, M. Poberžnik, I. Milošev, P. Marcus, A. Kokalj, J. Electrochem. Soc., 2023, 170, 071504-1–071504-11.

  7. A. Kokalj, Corros. Sci., 2023, 212, 110922-1–110922-12.

  8. A. Kokalj, Corros. Sci., 2023, 217, 111112-1–111112-15.

  9. A. Kokalj, Corros. Sci., 2022, 196, 109939-1–109939-15.

  10. M. Dlouhy, A. Kokalj, Corros. Sci., 2022, 205, 110443-1–110443-15.

  11. A. Kokalj, M. Dlouhy, Corros. Sci., 2022, 209, 110680-1–110680-12.

  12. D. Kozlica, I. Milošev, Electrochim. Acta, 2022, 431, 141154-1–141154-20.

  13. A. Kokalj, M. Lozinšek, B. Kapun, P. Taheri, S. Neupane, P. Losada-Pérez, C. Xie, S. Stavber, D. Crespo, F. U. Renner, A. Mol, I. Milošev, Corros. Sci., 2021, 179, 108856.

  14. P. Rodič, M. Lekka, F. Andreatta, I. Milošev, L. Fedrizzi, Electrochim. Acta, 2021, 370, 137664-1–137664-15.

  15. A. Kokalj, Corros. Sci., 2021, 180, 109016-1–109016-10.

  16. D. K. Kozlica, A. Kokalj, I. Milošev, Corros. Sci., 2021, 182, 109082-1–109082-26.

  17. C. Xie, I. Milošev, F. Renner, A. Kokalj, P. Bruna, D. Crespo, J. Alloys Compd., 2021, 879, 160464-1–160464-18.

  18. D. K. Kozlica, J. Ekar, J. Kovač, I. Milošev, J. Electrochem. Soc., 2021, 168, 031504-1–031504-18.

  19. S. Neupane, U. Tiringer, I. Milošev, A. Kokalj, J. Electrochem. Soc., 2021, 168, 051504-1–051504-13.

  20. A. Kokalj, D. Costa, J. Electrochem. Soc., 2021, 168, 071508-1–071508-21.

  21. I. Milošev, A. Kokalj, M. Poberžnik, D. Zimerl, J. Iskra, A. Nemes, D. Szabo, S. Zanna, A. Seyeux, J. Electrochem. Soc., 2021, 168, 071506-1–071506-23.

  22. A. Kokalj, M. Lozinšek, B. Kapun, P. Taheri, Sh. Neupane, P. Losada-Perez, Ch. Xie, S. Stavber, D. Crespo, F.U. Renner, J. M. C. Mol, I. Milošev, Corros. Sci., 2020, 179, 108856-1–108856-12.

  23. M. Poberžnik, F. Chiter, I. Milošev, P. Marcus, D. Costa, A. Kokalj, Appl. Surf. Sci. 2020, 525, 146156.

  24. P. Taheri, I. Milošev, M. Meeusen, B. Kapun, P. White, A. Kokalj, Mater. Degrad. 2020, 4, 12.

  25. I. Milošev, D. Zimerl, Ch. Carriére, S. Zanna, A. Seyeux, J. Iskra, S. Stavber, F. Chiter, M. Poberžnik, D. Costa, A. Kokalj, P. Marcus, J. Electrochem. Soc., 2020, 167, 061509.

  26. I. Milošev, T. Bakarič, S. Zanna, A. Seyeux, P. Rodič, M. Poberžnik, F. Chiter, P. Cornette, D. Costa, A. Kokalj, P. Marcus, J. Electrochem. Soc., 2019, 166, C1–C16.

  27. Kokalj, A.; Costa, D., Molecular Modeling of Corrosion Inhibitors. In: K. Wandelt, (Ed.) Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, 2018, 6, 332–345.

  28. G. Žerjav, A. Lanzutti, F. Andreatta, L. Fedrizzi, I. Milošev, Mater. Corr., 2017, 68, 30–41.

  29. G. Žerjav, I. Milošev, Corros. Sci., 2015, 98, 180–191.

  30. I. Milošev, N. Kovačević, A. Kokalj, Acta Chim. Slov., 2016, 63, 544–559.

  31. N. Kovačević, I. Milošev, A. Kokalj, Corros. Sci., 2017, 124, 25–34.

  32. N. Kovačević, I. Milošev, A. Kokalj, Corros. Sci., 2015, 98, 457–470.

  33. A. Kokalj, N. Kovačević, S. Peljhan, M. Finšgar, A. Lesar, I. Milošev, ChemPhysChem, 2011, 12, 3547–3555.

  34. A. Kokalj, S. Peljhan, M. Finšgar, I. Milošev, J. Am. Chem. Soc., 2010, 132, 16657–16668.

  35. A. Lesar, I. Milošev, Chem. Phys. Lett., 2009, 483, 198–203.

  36. M. Finšgar, A. Lesar, A. Kokalj, I. Milošev, Electrochim. Acta, 2008, 53, 8287–8297.

  37. T. Kosec, D. Kek Merl, I. Milošev, Corros. Sci., 2008, 50, 1987–1997.

  38. I. Milošev, M. Metikoš-Huković, J. Electrochem. Soc., 1991, 138, 61–67.

Projects related to corrosion inhibitors

  • M-ERA.NET Transnational call 2015 Corrosion inhibiton and dealloying descriptors, acronym COIN DESC, 2017–2020, coordinator dr. A. Kokalj

  • M-ERA.NET Transnational call 2014 Design of corrosion resistant coatings targeted for versatile applications, acronym COR_ID, 2016–2019, coordinator dr. I. Milošev

  • Bilateral project Proteus Slovenia–France INCOR: INterfaces relevant for CORrosion and its inhibition, project leaders: I. Milošev and D. Costa, 2018–2019

  • Bilateral project Proteus Slovenia–France Computational modeling and Experimental Characterization of Interfaces relevant for CORRosion: passive films and corrosion inhibitors, project leaders: A. Kokalj and D. Costa, 2018–2019

  • Role of molecular structure of inhibitors and their selfassembling in corrosion protection of metal surfaces, J1-2240, project leader: dr. A. Kokalj, 2009–2012

  • The influence of electronic structure of corrosion inhibitors on their efficiency, J1-9516, project leader: dr. A. Kokalj, 2007–2009