V001 / JSI


The members of the Department of Complex Matter at the Jožef Stefan Institute doc. dr. Alenka Mertelj and dr. Nerea Sebastián, together with Richard J. Mandle for the University of Leeds and Josu Martinez-Perdiguero from the University of the Basque Country have recently published an article in Nature Communications with the title On the molecular origins of the splay nematic phase. Polar nematic phases have been long-time predicted, but have only been experimentally realized recently. In this paper, the authors compare, both experimentally and by means of molecular dynamic simulations, two materials with similar chemical structure and demonstrate that a subtle molecular change enables denser packing when they exhibit polar order. Such reduction of the excluded volume lies in the origin of the polar nematic phase. This contribution shows how MD simulations can be used for molecular design, by predicting and identifying candidate materials for the polar or its precursor nematic phases.

Arhiv novic

Dr Ingrid Milošev, Head of Department of Physical and Organic Chemistry at Jožef Stefan Institute, has been named to the CORROSION journal Editorial Board as an Associate Editor. CORROSION was started in 1945 by the Association of Materials Protection and Performance (AMPP, former NACE). AMPP is a global community of professionals dedicated to materials protection through the advancement of corrosion control and protective coatings with more than 40,000 members in 130 countries CORROSION journal, led by Technical Editor in Chief Dr John Scully, provides a permanent record of progress in the science and technology of corrosion prevention and control, featuring peer-reviewed technical articles from the world’s top researchers. CORROSION journal welcomed new Associate Editor by Editorial article and podcast interview. The majority of 16 Associate Editors are from the USA, three members are from Europe. Dr. Ingrid Milošev has been named to the Board as the second female member.


Within the prestigious Comprehensive Analytical Chemistry series, volume 93, the Elsevier has published the book Analysis and Characterization of Metal-Based Nanomaterials, edited by the co-workers of the Department of Environmental Sciences of the Jožef Stefan Institute prof. dr. Radmila Milačič, prof. dr. Janez Ščančar and dr. Janja Vidmar, and dr. Heidi Goenaga-Infante from LGC, UK. The book summarizes recent progress in analytical methodologies for detection, characterization and quantification of metal-based nanomaterials (NMs) in a variety of complex samples. The use of establish validated analytical methods is of paramount importance in the evaluation of the risk that metal nanoparticles (NPs) may pose to the environment and human health. The book importantly contributes to the treasury of knowledge in the field of analytical chemistry and ranks Slovenian researchers among the world's top scientists in the field of NMs research. Along with renowned world scientists, promising young researchers from the Jožef Stefan Institute also contributed their chapters: Janez Zavašnik, Andreja Šestan, Vasyl Shvalya, Nina Kostevšek, Igor Serša and Janja Vidmar.


Researchers from Jožef Stefan Institute (Electronic Ceramics Department), National Institute of Chemistry, Ecole Polytechnique Fédérale de Lausanne, Materials Center Leoben and Tokyo Institute of Technology published a study in Nature Communications entitled Atomic scale symmetry and polar nanoclusters in the paraelectric phase of ferroelectric materials.The study provides structural details of polar nanoscale clusters whose hypothetical presence in the paraelectric phase of perovskite ferroelectrics has been discussed for decades. Using an atomic-resolution study by scanning transmission electron microscopy complemented by Raman spectroscopy, they directly reveal, visualize, and quantitatively describe static 2-4 nm large polar nanoclusters in the nominally nonpolar cubic phases of barium titanate based ceramics. The probable reason for the stabilization is the presence of local strains, which originate from the size difference between additives, vacancies and host ions. These results have implications for understanding the atomic-scale structure of disordered materials and may help clarify ambiguities about the dynamic-versus- static nature of nano-sized clusters.

Ranking of Jožef Stefan Institute
102nd World | 42nd Europe | 1st Slovenia


White Paper






Job Opportunities

The Jožef Stefan Institute invites interested researchers and others to joint our teams - Posts




only in Slovene

Tiskane novice IJS


Postgraduate School

The JOŽEF STEFAN INTERNATIONAL POSTGRADUATE SCHOOL, in collaboration with the INSTITUTE JOŽEF STEFAN, begins enrollment for doctoral and master's degrees for the academic year 2014/2015.

J. Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia, Telephone: +386 1 477 39 00, Fax: +386 1 251 93 85

eNoviceIJS | eNewsJSI | Arhiv novic | News Archive | Rubrike